Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development.
نویسندگان
چکیده
Congenital heart disease is the most common type of birth defect with an incidence of 1%. Previously, we described a point mutation in GATA4 that segregated with cardiac defects in a family with autosomal dominant disease. The mutation (G296S) exhibited biochemical deficits and disrupted a novel interaction between Gata4 and Tbx5. To determine if Gata4 and Tbx5 genetically interact in vivo, we generated mice heterozygous for both alleles. We found that nearly 100% of mice heterozygous for Gata4 and Tbx5 were embryonic or neonatal lethal and had complete atrioventricular (AV) septal defects with a single AV valve and myocardial thinning. Consistent with this phenotype, Gata4 and Tbx5 are co-expressed in the developing endocardial cushions and myocardium. In mutant embryos, cardiomyocyte proliferation deficits were identified compatible with the myocardial hypoplasia. Similar to Gata4, Gata6 and Tbx5 are co-expressed in the embryonic heart, and the transcription factors synergistically activate the atrial natiuretic factor promoter. We demonstrate a genetic interaction between Gata6 and Tbx5 with an incompletely penetrant phenotype of neonatal lethality and thin myocardium. Gene expression analyses were performed on both sets of compound heterozygotes and demonstrated downregulation of alpha-myosin heavy chain only in Gata4/Tbx5 heterozygotes. These findings highlight the unique genetic interactions of Gata4 and Gata6 with Tbx5 for normal cardiac morphogenesis in vivo.
منابع مشابه
Disruption of myocardial Gata4 and Tbx5 results in defects in cardiomyocyte proliferation and atrioventricular septation.
Mutations in GATA4 and TBX5 are associated with congenital heart defects in humans. Interaction between GATA4 and TBX5 is important for normal cardiac septation, but the underlying molecular mechanisms are not well understood. Here, we show that Gata4 and Tbx5 are co-expressed in the embryonic atria and ventricle, but after E15.5, ventricular expression of Tbx5 decreases. Co-localization and co...
متن کاملA threshold of GATA4 and GATA6 expression is required for cardiovascular development.
The zinc-finger transcription factors GATA4 and GATA6 play critical roles in embryonic development. Mouse embryos lacking GATA4 die at embryonic day (E) 8.5 because of failure of ventral foregut closure and cardiac bifida, whereas GATA6 is essential for development of the visceral endoderm. Although mice that are heterozygous for either a GATA4 or GATA6 null allele are normal, we show that comp...
متن کاملGATA factors efficiently direct cardiac fate from embryonic stem cells.
The GATA4 transcription factor is implicated in promoting cardiogenesis in combination with other factors, including TBX5, MEF2C and BAF60C. However, when expressed in embryonic stem cells (ESCs), GATA4 was shown to promote endoderm, not cardiac mesoderm. The capacity of related GATA factors to promote cardiogenesis is untested. We found that expression of the highly related gene, Gata5, very e...
متن کاملGata4 regulates the formation of multiple organs.
We have developed a loss-of-function model for Gata4 in zebrafish, in order to examine broadly its requirement for organogenesis. We show that the function of Gata4 in zebrafish heart development is well conserved with that in mouse, and that, in addition, Gata4 is required for development of the intestine, liver, pancreas and swim bladder. Therefore, a single transcription factor regulates the...
متن کاملCardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd
Cardiac transcription factors are master regulators during heart development. Some were shown to transdifferentiate tail tip and cardiac fibroblasts into cardiomyocytes. However, recent studies have showed that controversies exist. Potential difference in tail tip and cardiac fibroblast isolation may possibly confound the observations. Moreover, due to the use of a cardiac reporter (Myh6) selec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 326 2 شماره
صفحات -
تاریخ انتشار 2009